Jumat, 24 Maret 2017

sirkulasi atmosfir (bahan kuliah MK Perubahan Iklim, S2 Ilmu Lingkungan Minat Iklim dan Pembangunan)

1. Bacalah bahan kuliah di bawah ini
2. Diskusikan bersama dalam kelompok
3. Buatkan ringkasan
4. Jawablah pertanyaan yang ada pada akhir postingan
5. Kumpulkan secara individu
6. Verifkasi oleh dosen akan dilakukan pada pertemuan berikut

Atmospheric circulation 
Atmospheric circulation is the large-scale movement of air, and together with ocean circulation is the means by which thermal energy is redistributed on the surface of the Earth.
The Earth's atmospheric circulation varies from year to year, but the large scale structure of its circulation remains fairly constant. The smaller scale weather systems – mid-latitude depressions, or tropical convective cells – occur "randomly", and long range weather predictions of those cannot be made beyond ten days in practice, or a month in theory (see Chaos theory and Butterfly effect).
The Earth's weather is a consequence of its illumination by the Sun, and the laws of thermodynamics. The atmospheric circulation can be viewed as a heat engine driven by the Sun's energy, and whose energy sink, ultimately, is the blackness of space. The work produced by that engine causes the motion of the masses of air and in that process it redistributes the energy absorbed by the Earth's surface near the tropics to space and incidentally to the latitudes nearer the poles.
The large scale atmospheric circulation "cells" shift polewards in warmer periods (for example, interglacials compared to glacials), but remain largely constant as they are, fundamentally, a property of the Earth's size, rotation rate, heating and atmospheric depth, all of which change little. Over very long time periods (hundreds of millions of years), a tectonic uplift can significantly alter their major elements, such as the jet stream, and plate tectonics may shift ocean currents. During the extremely hot climates of the Mesozoic, a third desert belt may have existed at the Equator.

Latitudinal circulation features
The wind belts girdling the planet are organised into three cells in each hemisphere: the Hadley cell, the Ferrel cell, and the Polar cell. Those cells exist in both the northern and southern hemispheres. The vast bulk of the atmospheric motion occurs in the Hadley cell. The high pressure systems acting on the Earth's surface are balanced by the low pressure systems elsewhere. As a result, there is a balance of forces acting on the Earth's surface.

Hadley cell
The atmospheric circulation pattern that George Hadley described was an attempt to explain the trade winds. The Hadley cell is a closed circulation loop which begins at the equator. There, moist air is warmed by the Earth's surface, decreases in density and rises. A similar air mass rising on the other side of the equator forces those rising air masses to move poleward. The rising air creates a low pressure zone near the equator. As the air moves poleward, it cools, becomes more dense, and descends at about the 30th parallel, creating a high-pressure area. The descended air then travels toward the equator along the surface, replacing the air that rose from the equatorial zone, closing the loop of the Hadley cell. The poleward movement of the air in the upper part of the troposphere deviates toward the east, caused by the coriolis acceleration (a manifestation of conservation of energy). At the ground level however, the movement of the air toward the equator in the lower troposphere deviates toward the west, producing a wind from the east. The winds that flow to the west (from the east, easterly wind) at the ground level in the Hadley cell are called the Trade Winds.
Though the Hadley cell is described as located at the equator, in the northern hemisphere it shifts to higher latitudes in June and July and toward lower latitudes in December and January, which is the result of the Sun's heating of the surface. The zone where the greatest heating takes place is called the "thermal equator". As the southern hemisphere summer is December to March, the movement of the thermal equator to higher southern latitudes takes place then.
The Hadley system provides an example of a thermally direct circulation. The thermodynamic efficiency and power of the Hadley system, considered as a heat engine, is estimated at 200 terawatts.[1]

Polar cell
The Polar cell, likewise, is a simple system. Though cool and dry relative to equatorial air, the air masses at the 60th parallel are still sufficiently warm and moist to undergo convection and drive a thermal loop. At the 60th parallel, the air rises to the tropopause (about 8 km at this latitude) and moves poleward. As it does so, the upper level air mass deviates toward the east. When the air reaches the polar areas, it has cooled and is considerably denser than the underlying air. It descends, creating a cold, dry high-pressure area. At the polar surface level, the mass of air is driven toward the 60th parallel, replacing the air that rose there, and the polar circulation cell is complete. As the air at the surface moves toward the equator, it deviates toward the west. Again, the deviations of the air masses are the result of the Coriolis effect. The air flows at the surface are called the polar easterlies.
The outflow of air mass from the cell creates harmonic waves in the atmosphere known as Rossby waves. These ultra-long waves determine the path of the polar jet stream, which travels within the transitional zone between the tropopause and the Ferrel cell. By acting as a heat sink, the polar cell moves the abundant heat from the equator toward the polar regions.
The Hadley cell and the polar cell are similar in that they are thermally direct; in other words, they exist as a direct consequence of surface temperatures. Their thermal characteristics drive the weather in their domain. The sheer volume of energy that the Hadley cell transports, and the depth of the heat sink that is the polar cell, ensures that the effects of transient weather phenomena are not only not felt by the system as a whole, but — except under unusual circumstances — do not form. The endless chain of passing highs and lows which is part of everyday life for mid-latitude dwellers, at latitudes between 30 and 60° latitude, is unknown above the 60th and below the 30th parallels. There are some notable exceptions to this rule. In Europe, unstable weather extends to at least the 70th parallel north.
These atmospheric features are stable. Even though they may strengthen or weaken regionally over time, they do not vanish entirely.
The polar cell, orography and Katabatic winds in Antarctica, can create very cold conditions at the surface, for instance the coldest temperature recorded on Earth: −89.2 °C at Vostok Station in Antarctica, measured 1983.[2][3][4]

Ferrel cell
Part of the air rising at 60° latitude diverges at high altitude toward the poles and creates the polar cell. The rest moves toward the equator where it collides at 30° latitude with the high-level air of the Hadley cell. There it subsides and strengthens the high pressure ridges beneath. A large part of the energy that drives the Ferrel cell is provided by the polar and Hadley cells circulating on either side and that drag the Ferrel cell with it.[5] The Ferrel cell, theorized by William Ferrel (1817–1891), is therefore a secondary circulation feature, whose existence depends upon the Hadley and polar cells on either side of it. It might be thought of as an eddy created by the Hadley and polar cells. The Ferrel cell is weak, and the air flow and temperatures within it are variable. For this reason, the mid-latitudes are sometimes known as the "zone of mixing." At high altitudes, the Ferrel cell overrides the Hadley and Polar cells. The air of the Ferrel cell that descends at 30° latitude returns poleward at the ground level, and as it does so it deviates toward the east. In the upper atmosphere of the Ferrel cell, the air moving toward the equator deviates toward the west. Both of those deviations, as in the case of the Hadley and polar cells, are driven by conservation of energy. As a result, just as the easterly Trade Winds are found below the Hadley cell, the Westerlies are found beneath the Ferrel cell. The forces driving the flow in the Ferrel cell are weak, and so the weather in that zone is variable. Thus, strong high-pressure areas which divert the prevailing westerlies, such as a Siberian high, can override the Ferrel cell, making it discontinuous.
While the Hadley and polar cells are truly closed loops, the Ferrel cell is not, and the telling point is in the Westerlies, which are more formally known as "the Prevailing Westerlies." The easterly Trade Winds and the polar easterlies have nothing over which to prevail, as their parent circulation cells are strong enough and face few obstacles either in the form of massive terrain features or high pressure zones. The weaker Westerlies of the Ferrel cell, however, can be disrupted. The local passage of a cold front may change that in a matter of minutes, and frequently does. As a result, at the surface, winds can vary abruptly in direction. But the winds above the surface, where they are less disrupted by terrain, are essentially westerly. A low pressure zone at 60° latitude that moves toward the equator, or a high pressure zone at 30° latitude that moves poleward, will accelerate the Westerlies of the Ferrel cell. A strong high, moving polewards may bring westerly winds for days.
The Ferrel cell is driven by the Hadley and Polar cells. It has neither a strong source of heat nor a strong sink to drive convection. As a result, the weather within the Ferrel cell is highly variable and is influenced by changes to the Hadley and Polar cells. The base of the Ferrel cell is characterized by the movement of air masses, and the location of those air masses is influenced in part by the location of the jet stream, even though it flows near the tropopause. Overall, the movement of surface air is from the 30th latitude to the 60th. However, the upper flow of the Ferrel cell is weak and not well defined.
In contrast to the Hadley and Polar systems, the Ferrel system provides an example of a thermally indirect circulation. The Ferrel system acts as a heat pump with a coefficient of performance of 12.1, consuming kinetic energy at an approximate rate of 275 terrawatts.[1]

Longitudinal circulation features
While the Hadley, Ferrel, and polar cells (whose axes are oriented along parallels or latitudes) are the major features of global heat transport, they do not act alone. Temperature differences also drive a set of circulation cells, whose axes of circulation are longitudinally oriented. This atmospheric motion is known as zonal overturning circulation.
Latitudinal circulation is a result of the highest solar radiation per unit area (solar intensity) falling on the tropics. The solar intensity decreases as the latitude increases, reaching essentially zero at the poles. Longitudinal circulation, however, is a result of the heat capacity of water, its absorptivity, and its mixing. Water absorbs more heat than does the land, but its temperature does not rise as greatly as does the land. As a result, temperature variations on land are greater than on water. The Hadley, Ferrel, and polar cells operate at the largest scale of thousands of kilometers (synoptic scale). But, even at mesoscales (a horizontal range of 5 to several hundred kilometres), this effect is noticeable. During the day, air warmed by the relatively hotter land rises, and as it does so it draws a cool breeze from the sea that replaces the risen air. At night, the relatively warmer water and cooler land reverses the process, and a breeze from the land, of air cooled by the land, is carried offshore by night. This described effect is daily (diurnal).
At the larger, synoptic, scale of oceans and continents, this effect is seasonal or even decadal. Warm air rises over the equatorial, continental, and western Pacific Ocean regions. When it reaches the tropopause, it cools and subsides in a region of relatively cooler water mass.
The Pacific Ocean cell plays a particularly important role in Earth's weather. This entirely ocean-based cell comes about as the result of a marked difference in the surface temperatures of the western and eastern Pacific. Under ordinary circumstances, the western Pacific waters are warm, and the eastern waters are cool. The process begins when strong convective activity over equatorial East Asia and subsiding cool air off South America's west coast creates a wind pattern which pushes Pacific water westward and piles it up in the western Pacific. (Water levels in the western Pacific are about 60 cm higher than in the eastern Pacific.)[6][7][8][9]

Walker circulation
The Pacific cell is of such importance that it has been named the Walker circulation after Sir Gilbert Walker, an early-20th-century director of British observatories in India, who sought a means of predicting when the monsoon winds of India would fail. While he was never successful in doing so, his work led him to the discovery of a link between the periodic pressure variations in the Indian Ocean, and those between the eastern and western Pacific, which he termed the "Southern Oscillation".
The movement of air in the Walker circulation affects the loops on either side. Under normal circumstances, the weather behaves as expected. But every few years, the winters become unusually warm or unusually cold, or the frequency of hurricanes increases or decreases, and the pattern sets in for an indeterminate period.

The Walker Cell plays a key role in this and in the El Niño phenomenon. If convective activity slows in the Western Pacific for some reason (this reason is not currently known), the climates of areas adjacent to the Western Pacific are affected. First, the upper-level westerly winds fail. This cuts off the source of returning, cool air that would normally subside at about 30° north latitude, and therefore the air returning as surface easterlies ceases. The consequence of this is twofold. Warm water ceases to surge into the eastern Pacific from the west (it was "piled" by past easterly winds) since there is no longer a surface wind to push it into the area of the west pacific. This and the corresponding effects of the Southern Oscillation result in long-term unseasonable temperatures and precipitation patterns in North and South America, Australia, and Southeast Africa, and the disruption of ocean currents.
Meanwhile, in the Atlantic, fast-blowing upper level Westerlies of the Hadley cell form, which would ordinarily be blocked by the Walker circulation and unable to reach such intensities. These winds disrupt the tops of nascent hurricanes and greatly diminish the number which are able to reach full strength.

1. Apa itu atmosfir, lapiasan atmosfir serta gas penyusunnya
2. Apa yang dimaksudkan dengan sirkulasi atmosfir
3. Jelaskan perbedaan pola sirkulasi atmosfir secara vertikal dan horizontal secara global
4. Kira-kira apa makna kalimat yang ada dalam postingan di atas berikut ini 
The Walker Cell plays a key role in this and in the El Niño phenomenon.

Selamat mengerjakan tugas, be blessed

Rabu, 08 Maret 2017

bahan kuliah MK "perlindungan kebakaran hutan dan penggembalaan liar" Prodihut, Faperta, Undana


1. Bentuk 4 kelompok diskusi
2. Bacalah bahan di bawah ini SESUAI KELOMPOK
3. kerjakan tugas
4. Presentasikan pada waktu yang ditentukan
5. Setelah presentias dan diskusi, kumpulkansebagai tugas pribadi setiap mahasiswa


A wildfire or wildland fire is a fire in an area of combustible vegetation that occurs in the countryside or rural area.[1] Depending on the type of vegetation where it occurs, a wildfire can also be classified more specifically as a brush fire, bush fire, desert fire, forest fire, grass fire, hill fire, peat fire, vegetation fire, or veld fire.[2]

 Tugas: apa yang dimaksudkan dengan tipe-tipe vegetasi dan mengapa klasifikasi kebakaran lahan harus mengikuti tipe vegetasi tersebut?


Fossil charcoal indicates that wildfires began soon after the appearance of terrestrial plants 420 million years ago.[3] Wildfire’s occurrence throughout the history of terrestrial life invites conjecture that fire must have had pronounced evolutionary effects on most ecosystems' flora and fauna.[4] Earth is an intrinsically flammable planet owing to its cover of carbon-rich vegetation, seasonally dry climates, atmospheric oxygen, and widespread lightning and volcano ignitions.[4]
Wildfires can be characterized in terms of the cause of ignition, their physical properties, the combustible material present, and the effect of weather on the fire.[5] Wildfires can cause damage to property and human life, but they have many beneficial effects on native vegetation, animals, and ecosystems that have evolved with fire.[6][7]

Tugas: kebakaran liar pada komunitas tumbuhan daratan telah terjadi sejak ratusan juta tahun lalu. Ada kerugian tetapi ada juga keuntungan dari kebakaran liar. Identifikasikan dan jelaskan


Many plant species depend on the effects of fire for growth and reproduction.[8] However, wildfire in ecosystems where wildfire is uncommon or where non-native vegetation has encroached may have negative ecological effects.[5] Wildfire behaviour and severity result from the combination of factors such as available fuels, physical setting, and weather.[9][10][11] Analyses of historical meteorological data and national fire records in western North America show the primacy of climate in driving large regional fires via wet periods that create substantial fuels or drought and warming that extend conducive fire weather.[12]

Tugas: perilaku kebakaran liar dapat terjadi karena dan kombinasi 3 hal berikut: ketersediaan bahan bakar, kondisi fisik dan iklim. Coba anda perjelas maksud pernyataan tersebut


Strategies of wildfire prevention, detection, and suppression have varied over the years.[13] One common and inexpensive technique is controlled burning: permitting or even igniting smaller fires to minimize the amount of flammable material available for a potential wildfire.[14][15] Vegetation may be burned periodically to maintain high species diversity and frequent burning of surface fuels limits fuel accumulation.[16][17] Wildland fire use is the cheapest and most ecologically appropriate policy for many forests.[18] Fuels may also be removed by logging, but fuels treatments and thinning have no effect on severe fire behavior.[19] Wildfire itself is reportedly "the most effective treatment for reducing a fire's rate of spread, fireline intensity, flame length, and heat per unit of area" according to Jan Van Wagtendonk, a biologist at the Yellowstone Field Station.[20]

Tugas: Wagtendonk mengatakan bahwa kebakaran liar adalah cara paling efektif untuk mengontrol perilaku api. Mengapa demikian? Jelaskan

Keterangan: bahan diambil dari wikipedia.org

Kamis, 12 Mei 2016

sistem sgrororestri di indonesia by kurniatun hairiah, sunaryo dan widianto (MK Agroforestri, Prodi Kehutanan)

Kurniatun Hairiah, Sunaryo dan Widianto

1.   Agroforestri: ilmu baru, teknik lama

Penanaman berbagai macam pohon dengan atau tanpa tanaman setahun (semusim) pada lahan yang sama sudah sejak lama dilakukan petani di Indonesia. Contoh ini dapat dilihat dengan mudah pada lahan pekarangan di sekitar tempat tinggal petani. Praktek ini semakin meluas belakangan ini khususnya di daerah pinggiran hutan dikarenakan ketersediaan lahan yang semakin terbatas.  Konversi hutan alam menjadi lahan pertanian disadari  menimbulkan banyak masalah seperti penurunan kesuburan tanah, erosi, kepunahan flora dan fauna, banjir, kekeringan dan bahkan perubahan lingkungan global. Masalah ini bertambah berat dari waktu ke waktu sejalan dengan meningkatnya luas areal hutan yang dikonversi menjadi lahan usaha lain. Maka lahirlah agroforestri sebagai suatu cabang ilmu pengetahuan baru di bidang pertanian atau kehutanan. Ilmu ini berupaya mengenali dan mengembangkan keberadaan sistem agroforestri yang telah dikembangkan petani di daerah beriklim tropis maupun beriklim subtropis sejak berabad-abad yang lalu. Agroforestri merupakan gabungan ilmu kehutanan dengan agronomi, yang memadukan usaha kehutanan dengan pembangunan pedesaan untuk menciptakan keselarasan antara intensifikasi pertanian dan pelestarian hutan (Bene, 1977; King 1978; King, 1979).

Kamis, 21 April 2016

bahan TAKE HOME EXAM mk "perubahan iklim, adaptasi dan mitigasi", peminatan iklim dan pembangunan, prodi ilmu lingkungan, PPS Undana

Soal Test:

  • Suhu rata-rata global pada permukaan Bumi telah meningkat 0.74 ± 0.18 °C (1.33 ± 0.32 °F) selama seratus tahun terakhir. Intergovernmental Panel on Climate Change (IPCC) menyimpulkan bahwa, "sebagian besar peningkatan suhu rata-rata global sejak pertengahan abad ke-20 kemungkinan besar disebabkan oleh meningkatnya konsentrasi gas-gas rumah kaca akibat aktivitas manusia"[1] melalui efek rumah kaca. Kesimpulan dasar ini telah dikemukakan oleh setidaknya 30 badan ilmiah dan akademik, termasuk semua akademi sains nasional dari negara-negara G8. Akan tetapi, masih terdapat beberapa ilmuwan yang tidak setuju dengan beberapa kesimpulan yang dikemukakan IPCC tersebut.
Pertanyaan: apa yang dimasudkan dengan rata-rata suhu global? Apa faktor pengendalinya? Jelaskan mengapa aktivitas manusia disebut sebagai penyebab kenaikan rata-rata suhu global dimaksud? 

Rabu, 16 Maret 2016

inventarisasi sumberdaya alam: masalah, maksud, tujuan dan terminologi

Pengertian inventarisasi sumberdaya alam adalah pengumpulan dan penyusunan data dan segala sesuatu mengenai sumberdaya alam guna melakukan perencanaan pengelolaan sumberdaya alam bagi kesejahteraan masyarakat secara lestari dan serbaguna.

Inventarisasi sumberdaya alam juga dapat didefinisikan sebagai suatu usaha untuk menguraikan kualitas dan kuantitas sumberdaya alam serta berbagai ciri dan karakteristik arael tempat tumbuhnya. Tujuan dari inventarisasi sumberdaya alam adalah untuk mendapatkan data yang akan diolah menjadi informasi yang dipergunakan sebagai bahan perencanaan dan perumusan kebijaksanaan strategik jangka panjang, jangka menengah dan operasional jangka pendek sesuai dengan tingkatan dan Ketajaman inventarisasi yang dilaksanakan.

1.   Permasalahan  
Beberapa permasalahan yang dihadapi dalam pengelolaan sumber daya alam dan lingkungan hidup adalah:
·         keterbatasan data dan informasi dalam kuantitas maupun kualitasnya. Keterbatasan data dan informasi yang akurat berpengaruh pada kegiatan pengelolaan dan pengendalian sumber daya alam dan lingkungan hidup yang belum dapat berjalan dengan baik. Sementara itu, sistem pengelolaan informasi yang transparan juga belum melembaga dengan baik sehingga masyarakat belum mendapat akses terhadap data dan informasi secara memadai.
·         Permasalahan pokok lainnya adalah kurang efektifnya pengawasan dan pengendalian dalam pengelolaan sumber daya alam yang ada, yang menyebabkan kerusakan sumber daya alam. Kondisi ini ditandai dengan maraknya pengambilan terumbu karang dan pemboman ikan, perambahan hutan, kebakaran hutan dan lahan serta pertambangan tanpa izin.
·         Permasalahan lainnya adalah belum jelasnya pengaturan pemanfaatan sumber daya genetik yang mengancam keanekaragaman hayati dan kesehatan manusia serta permasalahan ketergantungan yang tinggi pada sumber daya fosil.

Rabu, 20 Januari 2016

soal ujian (take home exam) Statistika Sosial, Prodi MAP, PPS Undana

  • Berikut ini adalah data hubungan antara pendapatan keluarga per hari (X1) dan jumlah anggota keluarga (X2) dengan besarnya pengeluaran keluarga per hari (Y):

X1 (dalam ribu) : 100, 20, 40, 60, 80, 70, 40, 60, 70, 60
X2                   : 7, 3, 2, 4, 6, 5, 3, 3, 4, 3
Y (dalam ribu)    : 23, 7, 15, 17, 23, 22, 10, 14, 20, 19
Buatkan peramalan yang mungkin berdasarkan persamaan garis regresi yang berhasil ditetapkan. Berikan pula signifikansi hasil ujinya.

  • Dinas X menyatakan bahwa rata-rata pendapatan anak-anak yang berjualan koran kota kupang adalah sebesar Rp. 10.000,- per hari dengan simpangan baku sebesar Rp. 1500,- . Seorang mahasiswa S2 MAP Undana meneliti pada 50 orang anak penjual koran menemukan bahwa rata-rata pendapatan mereka sebenarnya adalah Rp.10.500,- per hari. Ujilah pendapat dinas X tersebut pada taraf uji 5% dan 1%.

Senin, 12 Oktober 2015

apa itu forest (sumber: wikipedia), MK pengantar ilmu kehutanan, Semester I, Prodi Kehutanan, Undana

bagaimana kita memahami hutan. Apakah sama pengertian hutan dan kehutanan?. Di NTT, menurut data TGHK (1982) luas kawasan hutan mencapai 1.8 juta ha. Akan tetapi dimana-mana yang dilihat awam adalah tanah kosong minim pohon. Bagaimana mengelola hutan dan kehutanan dalam situiasi seperti itu? Kita memulai perkuliahan ini dengan memahami terlebih dahulu arti kata "hutan (forest atau sylvo). Selamat menimba ilmu...

(kiri: kawasan hutan di daerah Lelogama, Kupang, NTT)

Kamis, 08 Oktober 2015

Klasifikasi dan Kriteria Kawasan Konservasi (MK Pengelolaan Kawasan Konservasi, S2, lmu Lingkungan)


A. Klasifikasi dan Kriteria Kawasan Konservasi Menurut Sistem IUCN

IUCN membagi kawasan konservasi berdasarkan klasifikasi menurut kategori yang terdiri dari:

1. Kategori I. Kawasan Rimba
Merupakan areal yang dilindungi terutama untuk kepentingan ilmu pengetahuan atau perlindungan hutan belantara.

1.1. Kategori I.a. Cagar Alam :
Merupakan areal daratan dan atau perairan laut yang memiliki beberapa nilai-nilai utama atau perwakilan ekosistem, jenis dan/atau kenampakan fisiografis, atau geologis, yang ditunjuk dan ditetapkan terutama untuk kepentingan ilmu pengetahuan, penelitian, dan/atau pemantauan lingkungan.

Kriteria penunjukan :
·         areal harus cukup luas untuk memastikan integritas ekosistem dan memenuhi tujuan pengelolaan dari areal yang dilindungi
·         areal harus dengan mantap bebas dari semua intervensi manusia secara langsung dan mampu untuk dapat dikelola
·         konservasi keanekaragaman hayati dapat dilakukan melalui perlindungan dan tidak memerlukan adanya manipulasi atau kegiatan pengelolaan habitat secara aktif

1.2. Kategori I.b. Kawasan Belantara Alam
Merupakan areal yang luas terdiri dari daratan dan/atau perairan laut yang tidak sama sekali mengalami modifikasi atau hanya sedikit sekali termodifikasi, dan tetap dominan memperlihatkan karakter dan pengaruh alami, sebagai tempat tinggal yang penting atau permanen dari hidupan liar, yang memerlukan upaya pengaturan dan perlindungan agar mampu memelihara dan melestarikan kondisi alamnya.

Rabu, 30 September 2015

paradigma pengelolaan kawasan konservasi

dear mahasiswa PKK, Prodi Ilmu Lingkungan, PPS Undana,

berikut ini adalah sebuah posting lawas dari www.antaranews.com (tahun 2013) tetapi masih relevan untuk pembelajaran. Carilah dan diskusikan lalu buatkan resume tentang " apa arus utama paradigma pengelolaan kawasan konservasi" di dalam tulisan ini. Di bagian bawah saya berikan catatan tentang pengertian paradigma. Mohon jawaban diberikan setiap mahasisiwa di dalam kolom komentar DENGAN MENGGUNAKAN AKUN PRIBADI MASING-MASING.

l. michael riwu kaho

Kawasan Konservasi Harus Bermanfaat Bagi Masyarakat


Jakarta, 1/4 (ANTARA) - Secara umum, paradigma pembangunan ekonomi biasanya berbenturan dengan paradigma pembangunan yang berwawasan lingkungan. Kini, kedua paradigma pembangunan tersebut dapat disinergikan melalui prinsip ekonomi biru. Untuk itu, melalui konsep Blue Economy Kementerian Kelautan dan Perikanan (KKP) bertekad mengembangkan ekonomi kelautan yang berwawasan lingkungan dengan memanfaatkan kawasan konservasi perairan, demi kesejahteraan masyarakat yang berkelanjutan. Demikian dikatakan Menteri Kelautan dan Perikanan Sharif C. Sutardjo, ketika membuka workshop internasional bertema “Pemanfaatan Kawasan Konservasi Perairan untuk Pengembangan Ekonomi Kelautan”. di Jakarta (1/04)

hutan sebagai komunitas tumbuhan (pokok bahasan IV); Ekologi Hutan, Prodi Kehutanan, S1

Ekosistem hutan hujan adalah suatu komunitas yang kompleks yang kerangka kerjanya disediakan oleh pohon-pohonan dengan berbagai ukuran. Di bawah tajuk pohon-pohonan tersebut kondisi iklim mikronya berbeda dengan kondisi yang ada di luar hutan, cahaya matahari sedikit, kelembaban lebih tinggi, dan suhu udara lebih rendah. Banyak tumbuhan pohon yang lebih kecil tumbuh di bawah naungan pohon-pohon yang lebih besar, diantaranya tumbuh pula tumbuhan pemanjat (climbers), epifit, tumbuhan pencekik (strangling plants), parasit dan saprofit (Whitmore, 1975).

Kelimpahan, ketahanan hidup, dan distribusi suatu jenis atau spesies tumbuhan tergantung pada kemampuan adaptasinya terhadap lingkungan fisik dan terhadap organisme lain yang berbagi tempat hidup pada lingkungan yang sama. Peranan interaksi intraspesifik (antar individu dari jenis yang sama) dan lingkungan fisik ternyata menentukan kelimpahan, distribusi dan dinamika populasi suatu jenis tumbuhan, sebagaimana yang terjadi pada interaksi antara jenis di dalam tingkatan trofik yang berbeda (prey predator interaction).